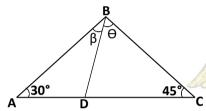
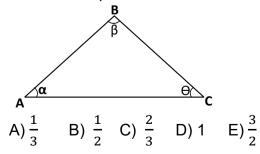

CENTRO DE ESTUDIOS PREUNIVERSITARIOS DE LA UNIVERSIDAD NACIONAL DE TRUJILLO C $\to PUNT$

CICLO SETIEMBRE - DICIEMBRE 2024 - II


Sesión 24: Semana 12:

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

01. De acuerdo al gráfico, se conoce que $2(BC) = (\sqrt{3}-1)AC$. La medida del ángulo ABC es:


02. Se tiene el siguiente gráfico. Si AD = 6, el valor de CD es:

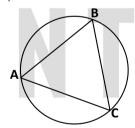
- A) $3\sqrt{2}$ sen θ csc β
- B) $3\sqrt{2}$ sen Θ sec β
- C) $3\sqrt{2}$ sen β csc Θ
- D) 3 senθ cscβ
- E) 3 senβ cscθ
- 03. En el triángulo ABC, se cumple que los lados a; b y c están en la relación de 2; 3

y 4. El valor de:
$$\frac{\cos^2 B - \cos^2 A}{\cos^2 C - \cos^2 B}$$
 es:
A) $\frac{5}{7}$ B) $\frac{5}{8}$ C) $\frac{7}{5}$ D) $\frac{8}{5}$ E) $\frac{6}{5}$

04. Dado el siguiente gráfico. Si AB = $\sqrt{10}$, BC = $\sqrt{2}$ y AC = $2\sqrt{2}$, el valor de: $\frac{sen^2\theta}{sen^2\alpha + sen^2\beta}$ es:

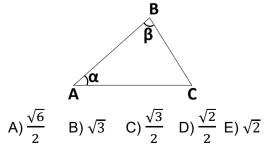
05. En el triángulo ABC, el ángulo C mide 60° y los lados son $BC = 2\sqrt{3} + \sqrt{2}$ y $AC = \sqrt{3} + \sqrt{2}$

 $2\sqrt{3} - \sqrt{2}$. La cotangente del ángulo BAC es:


A)
$$\frac{5-\sqrt{6}}{5\sqrt{3}}$$
 B) $\frac{10-4\sqrt{6}}{5}$ C) $\frac{5-\sqrt{6}}{4\sqrt{3}}$ D) $\frac{9-4\sqrt{6}}{5\sqrt{3}}$ E) $\frac{10-4\sqrt{6}}{4\sqrt{3}}$

06. En el triángulo ABC de longitudes a; b y c, se cumple que: a.cosA + b.cosB + c.cos C = 12. El valor de senAsenBsenC en términos del circunradio (R) es:

A)
$$\frac{1}{R}$$
 B) $\frac{2}{R}$ C) $\frac{3}{R}$ D) $\frac{4}{R}$ E) $\frac{5}{R}$


07. Los lados de un triángulo son tres números impares consecutivos y el mayor ángulo del triángulo mide 120°. El perímetro del triángulo es:

- A) 12 B) 14 C) 15 D) 17 E) 19
- **08.** En el gráfico, el valor del circunradio del triángulo ABC si AB= $\sqrt{3}$; $BC = \sqrt{2}$ y AC = 2, es:

A)
$$\frac{2}{23}\sqrt{69}$$
 B) $\frac{2}{23}\sqrt{46}$ C) $\frac{3}{16}\sqrt{165}$ D) $\frac{3}{25}\sqrt{138}$ E) $\frac{2}{23}\sqrt{138}$

09. Si $AB = 2\sqrt{3}$, $BC = \sqrt{6}$ y $AC = 3 + \sqrt{3}$, el valor de: $\cos(\alpha + 45^{\circ})$ + $\sin\beta$ es:

Curso: Matemática Semana: 12 Profesor: LINDER PAZ GARCIA Área: A, B,C, D

CENTRO DE ESTUDIOS PREUNIVERSITARIOS DE LA UNIVERSIDAD NACIONAL DE TRUJILLO CEPUNT

CICLO SETIEMBRE - DICIEMBRE 2024 - II

10. En el gráfico AB = BC. Si AM = 9, MC = 3y BM = 5, el valor de: $\sqrt{3}cos\alpha$ es:

A) $\frac{7}{5}$ B) $\frac{17}{5}$ C) $\frac{12}{5}$ D) $\frac{19}{5}$ E) $\frac{21}{5}$

11. Si las longitudes de los lados de un cuadrilátero inscriptible son 1; 2; 3 y 4. El valor del coseno del ángulo formado por los lados mayores es:

A) $\frac{1}{7}$ B) $\frac{2}{7}$ C) $\frac{3}{7}$ D) $\frac{4}{7}$ E) $\frac{5}{7}$

12. En el triángulo ABC, se tiene que a = 5bym∡ACB = 120°. El valor de tan(A - B) es:

A) $\frac{12\sqrt{3}}{32}$ B) $\frac{6\sqrt{3}}{32}$ C) $\frac{4\sqrt{3}}{32}$ D) $\frac{\sqrt{3}}{32}$ E) $\frac{2\sqrt{3}}{32}$

- 13. En el triángulo ABC, si el circunradio del triángulo es 1/2, el valor de la expresión: $\frac{\cos A \cos B}{ab} + \frac{\cos A \cos C}{ac} + \frac{\cos B \cos C}{bc}$ es: A) $\frac{1}{2}$ B) 1 C) 2 D) 4 E) $\frac{1}{4}$
- 14. En un triángulo ABC se tiene que a=5b y m $\leq C = 120^{\circ}$. El valor de: $sec^2\left(\frac{A-B}{2}\right)$

A) $\frac{29}{4}$ B) $\frac{31}{4}$ C) $\frac{29}{27}$ D) $\frac{31}{27}$ E) $\frac{11}{9}$

- 15. Dos lados de un triángulo proporcionales a 23 y 25, y el ángulo comprendido por ellos mide 32°. El mayor ángulo mide: B) 74° C) 76° D) 78° E) 82° A) 72°
- 16. Dos torres de observación A y B se localizan a 3,9 km de distancia entre sí, en una reserva natural. Los dos observadores ven un incendio en el punto C, de tal manera que m∡CAB = 74° y m∡CBA = 37°. La distancia en km donde se localiza el incendio a la torre B, es: A) 4 B) 4,6 C) 5 D) 5.2 E) 5.6

17. En un triángulo ABC, mc es la longitud de la mediana relativa al lado c. El valor de

la expresión: $k = \frac{m_c^2 - abcosC}{2c^2}$ es: B) 1 C) $\frac{1}{2}$ D) $\frac{1}{4}$ E) $\frac{1}{6}$

- 18. En un triángulo cuyos lados son tres números enteros consecutivos, el coseno del mayor ángulo es 1/8. El valor de la suma de los cuadrados de las medianas relativas al mayor y menor lado es:

B) 36 C) 35 D) 34

19. S y R son el área y el circunradio de un triángulo ABC. La expresión equivalente

a: $\frac{a \ sec A + b sec B}{csc 2 A csc 2 B}$ es: A) $\frac{8S}{R}$ B) $\frac{4S}{R}$ C) $\frac{2S}{R}$ D) $\frac{S}{R}$ E) $\frac{S}{2R}$

20. Los ángulos A, B y C de un triángulo son proporcionales respectivamente. El valor de:

 $E = \frac{a^2 - b^2}{c^2} \text{ es:}$ A) $\sqrt{2} - 1$ B) $\sqrt{2} + 1$ C) $1 - \sqrt{2}$ D) $1 + \sqrt{2}$ E) $\sqrt{2}$

21. En un triángulo ABC la bisectriz del ángulo del ángulo interno que mide 60° determina sobre el lado BC dos segmentos de 2 cm y 3 cm. El valor de la tangente del menor ángulo de dicho

A) $\frac{\sqrt{3}}{2}$ B) $\frac{\sqrt{3}}{4}$ C) $\frac{3\sqrt{3}}{4}$ D) $\frac{2\sqrt{3}}{2}$ E) $\frac{\sqrt{3}}{2}$

22. El perímetro de un triángulo ABC es 14 cm. La suma de los productos de sus lados tomados de dos en dos es 63 cm² y el producto de sus tres lados es 90 cm3.

El valor de: $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ A) $\frac{7}{18}$ B) $\frac{6}{18}$ C) $\frac{18}{11}$ D) $\frac{1}{10}$ E) $\frac{13}{10}$

23. En un triángulo ABC, $BC = 3\sqrt{7}$, m \not ACB+ $m \angle CBA = 60^{\circ} \text{ y b}^2 + c^2 = 45$. El valor de **b - c** es:

A) 3 B) 2 C) 6 D) 9 E) 4